1/3x + 1/2y ≤ 100
1/3x + 1/6y ≤ 80
1/3x + 1/6y ≤ 80
Como el número de lámparas son números naturales, tendremos dos restricciones más:
x ≥ 0
y ≥ 0
Al ser x ≥ 0 e y ≥ 0, trabajaremos en el primer cuadrante.y ≥ 0
Resolvemos gráficamente la inecuación: 1/3 x + 1/2 y ≤ 100; para ello tomamos un punto del plano, por ejemplo el (0,0).
1/3·0 + 1/2·0 ≤ 100
1/3·0 + 1/6·0 ≤ 80
La zona de intersección de las soluciones de las inecuaciones sería la solución al sistema de inecuaciones, que constituye el conjunto de las soluciones factibles.
Calcular las coordenadas de los vértices del recinto de las soluciones factibles.
A(0, 200) , B(240, 0) , C(210, 60)
Calcular el valor de la función objetivo
En la función objetivo sustituimos cada uno de los vértices.
f(x, y) = 15x + 10y
f(0, 200) = 15·0 + 10·200 = 2 000 €
f(240, 0 ) = 15·240 + 10·0 = 3 600 €
f(210, 60) = 15·210 + 10·60 = 3 750 € Máximo
La solución óptima es fabricar 210 del modelo L1 y 60 del modelo L2 para obtener un beneficio de 3750 € .
BIBLIOGRAFIA:
https://www.vitutor.com/algebra/pl/a_a1.html


No hay comentarios:
Publicar un comentario