miércoles, 14 de noviembre de 2018

Ejercicio 1

Una compañía fabrica y venden dos modelos de lámpara L1 y L2. Para su fabricación se necesita un trabajo manual de 20 minutos para el modelo L1 y de 30 minutos para el L2; y un trabajo de máquina para L1 y de 10 minutos para L2. Se dispone para el trabajo manual de 100 horas al mes y para la máquina 80 horas al mes. Sabiendo que el beneficio por unidad es de 15 y 10 euros para L1 y L2, respectivamente, planificar la producción para obtener el máximo beneficio.


1/3x + 1/2y ≤ 100
1/3x + 1/6y ≤ 80
Como el número de lámparas son números naturales, tendremos dos restricciones más:
x ≥ 0
y ≥ 0
Al ser x ≥ 0 e y ≥ 0, trabajaremos en el primer cuadrante.

Resolvemos gráficamente la inecuación: 1/3 x + 1/2 y ≤ 100; para ello tomamos un punto del plano, por ejemplo el (0,0).
1/3·0 + 1/2·0 ≤ 100
1/3·0 + 1/6·0 ≤ 80
La zona de intersección de las soluciones de las inecuaciones sería la solución al sistema de inecuaciones, que constituye el conjunto de las soluciones factibles.
Calcular las coordenadas de los vértices del recinto de las soluciones factibles.
A(0, 200) ,   B(240, 0) , C(210, 60) 
Calcular el valor de la función objetivo
En la función objetivo sustituimos cada uno de los vértices.
f(x, y) = 15x + 10y
f(0, 200) = 15·0 + 10·200 = 2 000 €
f(240, 0 ) = 15·240 + 10·0 = 3 600 €
f(210, 60) = 15·210 + 10·60 = 3 750 €    Máximo
La solución óptima es fabricar 210 del modelo L1 y 60 del modelo L2 para obtener un beneficio de 3750  .
BIBLIOGRAFIA:
https://www.vitutor.com/algebra/pl/a_a1.html

No hay comentarios:

Publicar un comentario